9,343 research outputs found

    A lower bound for linear approximate compaction

    Get PDF
    The {\em λ\lambda-approximate compaction} problem is: given an input array of nn values, each either 0 or 1, place each value in an output array so that all the 1's are in the first (1+λ)k(1+\lambda)k array locations, where kk is the number of 1's in the input. λ\lambda is an accuracy parameter. This problem is of fundamental importance in parallel computation because of its applications to processor allocation and approximate counting. When λ\lambda is a constant, the problem is called {\em Linear Approximate Compaction} (LAC). On the CRCW PRAM model, %there is an algorithm that solves approximate compaction in \order{(\log\log n)^3} time for λ=1loglogn\lambda = \frac{1}{\log\log n}, using n(loglogn)3\frac{n}{(\log\log n)^3} processors. Our main result shows that this is close to the best possible. Specifically, we prove that LAC requires %Ω(loglogn)\Omega(\log\log n) time using \order{n} processors. We also give a tradeoff between λ\lambda and the processing time. For ϵ<1\epsilon < 1, and λ=nϵ\lambda = n^{\epsilon}, the time required is Ω(log1ϵ)\Omega(\log \frac{1}{\epsilon})

    A semiclassical theory of quantum noise in open chaotic systems

    Get PDF
    We consider the quantum evolution of classically chaotic systems in contact with surroundings. Based on \hbar-scaling of an equation for time evolution of the Wigner's quasi-probability distribution function in presence of dissipation and thermal diffusion we derive a semiclassical equation for quantum fluctuations. This identifies an early regime of evolution dominated by fluctuations in the curvature of the potential due to classical chaos and dissipation. A stochastic treatment of this classical fluctuations leads us to a Fokker-Planck equation which is reminiscent of Kramers' equation for thermally activated processes. This reveals an interplay of three aspects of evolution of quantum noise in weakly dissipative open systems; the reversible Liouville flow, the irreversible chaotic diffusion which is characteristic of the system itself, and irreversible dissipation induced by the external reservoir. It has been demonstrated that in the dissipation-free case a competition between Liouville flow in the contracting direction of phase space and chaotic diffusion sets a critical width in the Wigner function for quantum fluctuations. We also show how the initial quantum noise gets amplified by classical chaos and ultimately equilibrated under the influence of dissipation. We establish that there exists a critical limit to the expansion of phase space. The limit is determined by chaotic diffusion and dissipation. Making use of appropriate quantum-classical correspondence we verify the semiclassical analysis by the fully quantum simulation in a chaotic quartic oscillator.Comment: Plain Latex, 27 pages, 6 ps figure, To appear in Physica

    A model for projectile fragmentation

    Full text link
    A model for projectile fragmentation is developed whose origin can be traced back to the Bevalac era. The model positions itself between the phenomenological EPAX parametrization and transport models like "Heavy Ion Phase Space Exploration" (HIPSE) model and antisymmetrised molecular dynamics (AMD) model. A very simple impact parameter dependence of input temperature is incorporated in the model which helps to analyze the more peripheral collisions. The model is applied to calculate the charge, isotopic distributions, average number of intermediate mass fragments and the average size of largest cluster at different Z_{bound} of different projectile fragmentation reactions at different energies.Comment: Talk given by Gargi Chaudhuri at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. 10 pages, 7 figure

    A Note on Effective String Theory

    Full text link
    Motivated by the possibility of an effective string description for the infrared limit of pure Yang-Mills theory, we present a toy model for an effective theory of random surfaces propagating in a target space of D>2D>2. We show that the scaling exponents for the fixed area partition function of the theory are apparently well behaved. We make some observations regarding the usefulness of this toy model.Comment: 17 pages, LATEX, UTTG-21-9

    Studies of structural, magnetic, electrical and photoconducting properties of Bi1x_{1-x}Cax_{x}MnO3_{3} epitaxial thin films

    Get PDF
    The dynamics of the charge ordered (CO) state under non-equilibrium conditions created by strong dc-electric field (~106 V/cm) and photo-illumination with short (~ 6 ns) laser pulses is investigated in Bi1-xCaxMnO3 (x > 0.5) epitaxial films. A pulsed laser deposition method was used to synthesize films on (100) LaAlO3 (LAO) and (100) SrTiO3 (STO) substrates. The crystallographic structure, temperature dependence of electrical resistivity and magnetization of the samples of different composition prepared under different oxygen partial pressure (pO2) and deposition temperature (TD) are studied. For the x = 0.6 sample grown on LAO, a clear signature of charge ordering at ~275 K is seen in the magnetization and at ~ 260 K in the resistivity data. The same sample grown on STO revealed a complex behavior, which entails charge ordering at ~300 K, a Neel order at ~150 K and finally a weak ferromagnetic phase below 50 K. A strong correlation between charge ordering temperature (TCO) and the c-axis lattice parameter (c) of the type (dTCO/dc ~-350 K/A) imerges from measurements on films deposited under different growth conditions. Since the out of plane lattice parameter (c) increases with in plane compressive strain, this effect directly show a compressive strain induced suppression of the TCO. The current (I)- voltage (V) characteristics of the samples at T < TCO show hysteresis due to a compound effect of Joule heating and collapse of the CO state. Transient changes in conductivity of lifetime ranging from nano to microseconds are seen at T < TCO on illumination with pulsed UV (355 nm) radiation. These observations are explained on the basis of the topological and electronic changes in the charge ordered phase.Comment: 19 figures, 34 page

    A Conditional Empirical Likelihood Based Method for Model Parameter Estimation from Complex survey Datasets

    Full text link
    We consider an empirical likelihood framework for inference for a statistical model based on an informative sampling design. Covariate information is incorporated both through the weights and the estimating equations. The estimator is based on conditional weights. We show that under usual conditions, with population size increasing unbounded, the estimates are strongly consistent, asymptotically unbiased and normally distributed. Our framework provides additional justification for inverse probability weighted score estimators in terms of conditional empirical likelihood. In doing so, it bridges the gap between design-based and model-based modes of inference in survey sampling settings. We illustrate these ideas with an application to an electoral survey
    corecore